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early times, when relativistic late times, when nonrelativistic

>mv < 0.29eV (WiggleZ + WMAP+ HO,

v CMB detects this, Reimer-Sorenson et al 2015)

consistent with 3 species
with temp Tv = 0.00017 eV >mv < 0.59eV (CMB only, Planck 2015)

= nv ~ 336/cm?3 >mv < 0.17eV (CMB +BAQO, Planck 2015)

Future CMB + BAO and/or galaxy clustering

forecasted to reach omv around 0.016eV

Palanque Delabrounle 2015)
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Neutrino mass
Oscillation data gives a lower bound

Ami2=7.54""" x10 eV

|Am1z2 | = 2.4+0.06 x103 eV

Minimum mass for Normal Hierarchy > myi = 0.058eV
Minimum mass for Inverted Hierarchy > mMyi = 0.098eV

Cosmology can detect the neutrino mass scale

Cosmology can rule out Inverted Hierarchy

Information about the neutrino mass splitting is in cosmological data, but it
seems to out of reach to detect
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The existence of neutrino mass changes pv (a), and therefore
H(a), Da(a)
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Figure 1. The dependence of expansion rate H(z) and comoving
angular diameter distance D 4(2) on M,, where we minimize the
x2(©, M,) by adjust the 6 ACDM parameters © when increasing
M, from 0 to 50,100,200 meV.

Pan & Knox 2014
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Observables: Gravitational Lensing of CMB

(image from Planck)
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Figure 5. The effect of massive neutrinos on the CMB lensing potential power spectrun

fractional change in C§® for a given value of > m. is shown relative to the case for zero ne
Projected constraints on Cf* for a Stage-IV CMB experiment are shown for > m, = 100 m
have approximated all of the neutrino mass to be in one mass eigenstate and fixed the total m
Q..h? and Hy. The 1o constraint for > m, is approximately 45 meV for lensing alone and droj

when combined with other probes.
Abazajian et al 2013



Observables:

sensitive to:

- change in integrated
amplitude of matter
fluctuations between us
and the CMB

Gravitational Lensing of CMB
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- change in integrated
amplitude of matter
fluctuations between us
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- Qmh2 (total matter density)
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sensitive to:

- change in integrated
amplitude of matter
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and the CMB

degeneracies:
- Qmh2 (total matter density)

- As (amplitude of primordial
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- (and As is degenerate with
T, optical depth)
- dark energy
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Observables: Gravitational Lensing of CMB
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Observables: Spectroscopic Galaxy Clustering
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Observables:

sensitive to:
- change in amplitude of galaxy
fluctuations at redshift(s) of
measurement z
- change of rate of change of
growth of matter fluctuations at z

Spectroscopic Galaxy Clustering
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Figure 2. Relative amplitude difference between a linear power
spectrum monopole (top) and quadrupole (bottom) with > m, =
0eV (black lines) and Y m, = 0.4eV (red lines). We keep Q.h?
fixed when including the neutrino mass, so that the total phys-
ical matter density increases as Qmh? = Qch? + Qph? + Qu A2,
The black dashed lines show the fitting range for the CMASS-
DR11 results of Beutler et al. (2013). We subtract 0.5 from the
quadrupole for plotting purposes.

Beutler et al 2014
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sensitive to:
- change in amplitude of galaxy
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spectrum monopole (top) and quadrupole (bottom) with > m, =
0eV (black lines) and 3. m, = 0.4eV (red lines). We keep Q.h?
fixed when including the neutrino mass, so that the total phys-
ical matter density increases as Qmh? = Qch? + Qph? + Qu A2,
The black dashed lines show the fitting range for the CMASS-
DRI11 results of Beutler et al. (2013). We subtract 0.5 from the
quadrupole for plotting purposes.

Beutler et al 2014
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The black dashed lines show the fitting range for the CMASS-
DRI11 results of Beutler et al. (2013). We subtract 0.5 from the
quadrupole for plotting purposes.
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Observables: Spectroscopic Galaxy Clustering
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- change in amplitude of galaxy
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e Redshift surveys like DESI, with help from Planck and possibly lensing surveys, will measure the sum of neutrino
masses to ~ 0.01 — 0.02 eV in the 2020’s. This will give a strong detection of the minimum possible sum of

masses ~ 0.06 eV, however, the mass hierarchy will only be distinguishable with luck, if the true sum of masses

is right at the minimum.

Font-Ribera et al 2014
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Observables: Spectroscopic Galaxy Clustering
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masses ~ 0.06 eV, however, the mass hierarchy will only be distinguishable with luck, if the true sum of masses
is right at the minimum. Font-Ribera et al 2014
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Observables: Photometric Galaxies, Weak Lensing Shear

(image from Smoot group)



Observables: Photometric Galaxies, Weak Lensing Shear

sensitive to:
- change in amplitude of galaxy

fluctuations at redshift(s) of
measurement z

degeneracies:
- Qmh? (total matter density)

- As (amplitude of primordial
fluctuations)

- dark energy/modified gravity

- astrophysics? (galaxy bias?)

systematics:
- modeling nonlinear P(k)
- modeling baryonic effects on P(k)
- intrinsic alignments
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FIG. 3. Top panel: Angular clustering of galaxies in three
redshift shells with mean photo-z of z = 0.4 (black), z = 0.8
(red) and z = 1.2 (blue). The solid lines depict models with
massless neutrinos and dashed lines are for a ACDM model
with massive neutrinos, where Q. = 0.005 and ) m. = 0.235
eV. Bottom panel: The spectrum suppression relative to the
case with massless neutrinos.
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Observables: Photometric Galaxies, Weak Lensing Shear

sensitive to:
- change in amplitude of galaxy
fluctuations at redshift(s) of
measurement z
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Observables:

sensitive to:
- change in amplitude of density
fluctuations at redshift(s) of
measurement z

degeneracies:
- Qmh? (total matter density)

- As (amplitude of primordial
fluctuations)

- dark energy/modified gravity

systematics:

- cluster mass measurements/
survey completeness

- modeling the cluster abundance
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Other Observables:

- scale-dependent halo bias

- CDM/neutrino relative velocities

- pairwise kSZ statistics



Other Observables:

- scale-dependent halo bias
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Other Observables:

- CDM/neutrino relative velocities
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Other Observables:

- pairwise kSZ statistics
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Opportunity:
Detect neutrino mass scale!

Discover sterile neutrinos, an inconsistency with standard
cosmological model, and/or neutrino oscillation data!
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Opportunity:
Detect neutrino mass scale!

Discover sterile neutrinos, an inconsistency with standard
cosmological model, and/or neutrino oscillation data!

Challenge:

Convince yourself that the detection is real

- compelling handle on astrophysical and observational systematics and
possible degeneracies

- multiple probes

- multiple probes sensitive to different “neutrino-y” effects



Questions

How best to look for new physics (sterile neutrinos, an
inconsistency with standard cosmological model, and/or
neutrino oscillation data)?

How to convince yourself that the detection is real?

How to get more info than > mv?



